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Module 1, Video 2: Sex differences in hippocampal structural and synaptic plasticity: 
implications for normal learning and memory 
 
Learning and memory are important cognitive functions with wide-ranging implications 
for survival. Sex differences in learning and memory are widely reported across species 
and in humans [1] and vary in their intensity based on the type of memory being 
studied, with some tasks favoring males and others favoring females. There are also sex 
differences in plasticity in brain regions critical to learning and memory. This plasticity 
occurs across the lifespan, leading to critical structural and functional differences that 
may explain sexual dimorphisms in learning and memory. In this video, we will focus on 
sex differences in hippocampal structural and synaptic plasticity, with particular 
attention to how biological sex influences neurogenesis, dendritic morphology, and 
long-term potentiation (or LTP). We focus on the hippocampus due to its highly plastic 
nature, abundance of sex hormone receptors, and implication in numerous forms of 
normal and impaired learning and memory.  
 
Sex differences in hippocampal structural plasticity 
 
Human studies of sex differences in hippocampal volume have shown mixed results, 
with observed differences likely dependent upon factors like age and pubertal status [2, 
3] even after correcting for total brain size. But there are some volumetric differences in 
hippocampal subregions and the connectivity between them, which may account for 
functional sex differences in learning and memory [4, 5].  
 
Work in animals also shows region-specific sex differences in hippocampal volume, 
including the dentate gyrus, CA1 and CA3 [6]. Many of the observed differences reflect 
morphological differences in the granule neurons and pyramidal neurons that make up 
the hippocampus [7-9], including the number of dendritic intersections in the dentate 
gyrus [9], the number of basal dendritic branch points [10] and the number of primary 
dendrites [11] and dendritic spines [7] in the CA3, and the apical dendritic spine density 
in the CA1 [12]. Many of these differences also show estrous cycle-dependent structural 
plasticity.  
 
One sex-dependent variation in hippocampal structural plasticity is observed with 
dendritic spines. Dendritic spines are small, membranous protrusions from the 
dendrites of neurons. In mammals, they are the primary site for excitatory synaptic 
inputs.  
  
Dendritic spine structural plasticity is related to changes in synaptic efficacy, learning 
and memory, and other cognitive processes. But it is unclear whether dendritic spine 
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plasticity precedes or is a consequence of behavioral changes, or both. Males and 
females show basal differences in spine density in the hippocampus, particularly in the 
CA1 region [8, 13]. Spine density can also fluctuate with the estrous cycle. Over the 4-5 d 
estrous cycle of the rat, spine density can change as much as 30%. It is the highest 
during proestrus when ovarian hormones are the highest, and then decreases back 
down to its lowest point during the estrus phase [14]. 
 
The magnitude and appearance of sex differences in other measures of hippocampal 
dendritic morphology also vary with the estrous cycle.   
 
In addition to basal differences in hippocampal spine density, further sex differences are 
also observed after sex hormone manipulations [6]. In female rats, fluctuations in 
endogenous estradiol or the administration of exogenous estradiol increases dendritic 
spine density in CA1 pyramidal neurons [8, 12, 14]. Ovariectomy decreases spine density 
to levels that are similar to those of males, particularly in the CA1. This effect is rapidly 
reversed with estradiol or progesterone treatment in as little as 40 min [8, 12, 15, 16]. 
Changes in spine density also appear to have functional implications as estradiol-
induced increases in CA1 spines also improves learning [17]. However, these effects may 
not be consistent across species or might be altered when assessed in conjunction with 
stress or learning paradigms [18].  
 
Dendritic spine density in the CA1 region also fluctuates with sex hormones in males. 
These changes are driven by testosterone, not the conversion of testosterone to 
estradiol [19]. Gonadectomy also significantly reduces CA1 dendritic spine density in 
males, an effect that is reversed by add back therapy of testosterone or 
dihydrotestosterone, but not estradiol [20, 21]. Therefore, both estradiol and 
testosterone can regulate spine density. 
 
Sex differences in sex hormone receptor localization 
 
Hippocampal neuronal structural plasticity—including changes in spine density—is 
evident across the hormone cycle. Much of the research on the mechanisms driving this 
structural plasticity has focused on estrogen’s ability to modify the structure of neurons. 
The various estradiol receptors are found throughout the hippocampus of both males 
and females [22] but their subcellular distribution varies across sexes. For example, 
GPER1 shows similar distribution in males and females, including in the axon, dendritic 
tree, spine shaft, and terminal endings. As estrogen levels increase, however, increased 
axonal labeling of GPER1 is found in females [23]. ERα and ERβ, in contrast, exhibit more 
notable sex differences in their localization with ERα primarily located in dendritic spine 
heads and the base of the spine shafts in CA1 and CA3 and ERβ localized in the cell body 
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and dendrite membranes [24]. Sex differences in the subcellular localization of hormone 
receptors suggest a potential mechanism for how sex hormones lead to hippocampal 
structural plasticity of males and females as well as across the estrous cycle. 
 
Sex differences in synaptic plasticity 
 
Differences in structural plasticity between males and females can also lead to 
functional differences in the hippocampus. The most studied form of functional synaptic 
plasticity is LTP, a cellular correlate for learning and memory [26] that has been studied 
in the contexts of normal aging, stress-induced pathology, and neurodegenerative 
diseases [27]. In LTP, high-frequency stimulation applied to the Schaffer collaterals of 
CA3 neurons leads to changes in the EPSP amplitude of CA1 neurons. LTP has two 
phases: early LTP, which occurs faster and is mediated by NMDA channels, and late LTP, 
which requires protein synthesis.  
 
Males exhibit larger early and late LTP compared to females in the dentate gyrus, CA3 
and CA1 [28-31]. In females, estradiol enhances the magnitude of NMDA-mediated LTP 
of CA3-CA1 synapses (reviewed in [32, 33]). There are also variations among females 
across the estrous cycle. For example, the magnitude of perforant path early-LTP is 
greater in proestrus compared to diestrus [34].  
 
Some of the observed sex differences in hippocampal LTP can be directly attributed to 
the variations in sex hormone receptor localization within hippocampal neurons [35, 
36]. Thus, it is important to remember that sex differences in structural plasticity should 
be considered when studying the genomic, cellular and structural bases of hippocampal 
function. 
 
Sex differences in hippocampal neurogenesis 
 
Neurogenesis refers to the process by which new neurons are generated and integrated 
into the central nervous system. The hippocampus—and specifically the dentate gyrus—
is one of only two sites in the adult mammalian brain that is capable of neurogenesis 
[38]. As new neurons are integrated into the existing neural circuitry, they have 
functional impacts under both normal and disease states. Adult hippocampal 
neurogenesis is also thought to play a major role in the pathophysiology of numerous 
neurological and psychiatric disorders. Adult neurogenesis is typically studied as 
changes in neuronal proliferation, migration, differentiation and survival; here we will 
focus on sex differences in proliferation and survival. 
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For proliferation, season- and estrous cycle stage-specific differences have been 
observed, with greater proliferation in the dentate gyrus of females versus males during 
the non-breeding season or during proestrus compared to both non-proestrus females 
and males [40]. These differences may be species specific, as studies show effects in 
voles and rats, but not in mice [41, 42].  
 
In contrast to cell proliferation, the basal survival of new neurons does not seem to 
differ between males and females across species [39-41, 43]. When basal differences in 
survival do occur, it is usually in the ventral dentate gyrus, with greater levels in males 
[44]. Similarly, endogenous sex hormones such as androgens and estrogens can 
modulate adult hippocampal cell survival differentially between males and females [45-
47]. Changes in aspects of adult neurogenesis are also observed after a variety of 
experimental and environmental exposures, and these effects also show sex differences. 
Most notably, stress and the exposure to hippocampus-dependent learning tasks can 
also differentially regulate the survival of new hippocampal cells in male and female 
rodents, with learning effects dependent on the type of task, the quality of learning, 
and/or task difficulty. For example, males outperform females in acquiring the spatial 
version of the Morris water maze [48], which was associated with enhanced neuronal 
survival in the dentate gyrus; a similar association was also found in the trace eyeblink 
conditioning task during diestrus [44]. 
 
Sex differences in learning and memory 
 
The vast majority of studies examining sex differences in hippocampal-dependent 
learning and memory have used young post-pubertal rodents that are gonadally intact. 
While a full review of all sex differences in learning and memory is beyond the scope of 
this video, we do focus on two well-studied types of hippocampal memory. The first is 
spatial memory. Spatial memory is primarily assessed with the Morris water maze or 
radial arm maze tasks, both of which have been adapted into virtual computerized 
versions for use in humans, allowing for improved translation of these findings. 
 
Two separate meta-analyses, one in humans [50] and one in rodents [51], concluded 
that spatial memory performance favors males in young adults and rodents. However, 
many factors, including stress associated with the task, the type of task, the testing 
protocol, and age of the animals may influence the findings, making replication of sex 
differences across paradigms and laboratories difficult [51].  
 
The second type of hippocampal-dependent memory is object memory. Most of the 
available evidence suggests that females outperform males in tests of object memory. 
These tests involve presenting an animal with two identical objects during a training 
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phase and then switching out one of those objects during a test phase [52]; animals 
should spend more time with the novel object versus the familiar object. Object 
memory tasks show high sensitivity to sex steroids in adulthood, and females perform 
better when estrogen and progesterone levels are elevated during the estrous cycle 
[53]. Fewer studies have been performed in males, but intrahippocampal infusion of 
estradiol post-training seems to enhance object memory in gonadally intact male mice 
[54]. These data suggest that both spatial and object memory performance may be 
directly related to circulating steroid hormone levels in both males and females.  
 
The role of estrogens in hippocampal-dependent learning and memory 
 
Learning and memory involves a series of processes that include the encoding, storage 
and retrieval of information.  
 
A causal link between changes in dendritic spine density and alterations in learning and 
memory has not been definitively proven. However, because estrogens rapidly increase 
synaptic density both in vivo [16] and in vitro [55, 56], as well as enhance learning  and  
memory within the same time frame (e.g., [57-65]), it is reasonable to assume these 
processes work together. A two-step process for estrogen’s effects on learning and 
memory has been proposed. In Step 1, estrogens may prime neurons to form lasting 
connections by first creating silent synapses and increasing dendritic spine density. This 
likely occurs through actin cytoskeleton dynamics [66] and de novo protein synthesis 
[67-70]. In Step 2, stimulation leads these neurons to undergo LTP. In this process, novel 
mature synapses are only formed when dictated by neuronal activity. While this effect 
was investigated in cultured embryonic cortical neurons, this “two-step wiring plasticity” 
process may also explain the enhancing effect of estrogen on learning in other brain 
regions, such as the hippocampus. However, because other potential mechanisms exist 
that may not involve dendritic spine changes [71], further studies are needed.  
 
Structural and synaptic plasticity within the hippocampus allows for changes and 
adaptability that facilitate many necessary processes, such as learning and memory. It 
also makes the hippocampus susceptible to disease. A variety of factors can influence 
the effects of estrogens on hippocampal plasticity, including sex, age, dose, and 
hormonal state. Understanding how sex hormones interact with these factors in healthy 
brains is essential for understanding the biological bases of dysregulation of these 
processes and various disease states. The marked sex differences in the prevalence of 
many disorders related to dysregulated hippocampal function highlight the importance 
of considering sex as a biological variable in preclinical research. 
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