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Module 1, Video 4: Sex differences during normal and pathological aging 
 
Cognition naturally declines with age. Of the many factors that contribute to the risk of 
suffering from neurodegenerative diseases, aging predominates. Further, more than half of all 
individuals over 65 are women and women have a longer lifespan than men. Thus, their 
prevalence of neurodegenerative diseases is much higher, with only Parkinson’s disease 
exhibiting an increased risk in men [1], demonstrating a need to understand sex differences in 
normal and pathological brain aging.  
 
 However, a recent analysis of over 15,000 studies published between 1994 and 2014 showed 
that over 40% of preclinical studies did not report the animal’s age, and 20% failed to report 
both sex and age [2, 3], highlighting an important research gap. In this video, we will cover sex 
differences during normal AND pathological aging, using Alzheimer’s disease as an example.  
 
In women, menopause, and the resultant decline in sex hormones, is associated with a number 
of physiological changes. These changes coincide with cognitive declines and the increased risk 
of various neurodegenerative diseases [4, 5][6][7, 8][9-11]. Similarly, aging rodents also 
undergo many changes as they enter reproductive senescence [12][13, 14] [15][16-18], 
including effects on cognition, making them an attractive model for studying the effects of 
estrogen loss on memory.  
 
Overall, reproductive senescence in rodents is similar to menopause in humans, but some 
distinct differences should be noted. Notably, approximately half of rodents enter a persistent 
estrous state and have continuously high hormone levels and some remaining follicles for the 
remainder of their life. We will discuss these differences between rodents and humans further 
in Video 10. 
 
The timing of rodent ovarian cycle cessation also makes them an ideal model for studying the 
effects of estrogen loss on memory. By 12 months, approximately 10% of female rats are 
acyclic. This number increases to 40% by 18 months and 75% by 24 months [19]. Thus, rodents 
are typically considered “aged” at approximately 2 years old and “middle aged” from 16-18 
months. But most memory and cognition studies are conducted in rodents between 12 and 16 
months, limiting the translational relevance of these memory studies conducted in “young” 
animals. 
 
Age-related changes in the brain are also noted in multiple species. Effects on the hippocampus 
are widely studied in aging due to its role in learning and memory and documented association 
with circulating estrogen levels [16]. Deficits in hippocampal-dependent spatial cognition are 
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associated with the normal loss of estrous cycling in both rats and mice [20, 21]. Although there 
are many tests to assess age-related cognitive decline [22][23], much of this work has focused 
on the Morris water maze for several reasons. First, while the Morris water maze in itself is 
stressful, its results are not confounded by food or water deprivation to promote motivation 
during the test. Second, cognition can be assessed rather quickly. This task has also recently 
been adapted for use in Alzheimer’s patients, potentially improving its  translational relevance 
for assessing cognitive decline [24].  
 
Similar to humans, spatial memory impairments emerge gradually in rodents with age. Few 
studies have assessed sex differences in cognition over time. But females show significant 
deficits in Morris water maze spatial memory at an earlier age than males: for females, about 
12 months in rats and 17 months in mice, whereas for males, about 18 and 25 months, 
respectively [25-28]. While the exact mechanism of sex differences in age-related spatial 
cognitive decline is unknown [29, 30], it is clear that these changes coincide with the cessation 
of circulating ovarian hormones [31]. Thus, sex differences in normal lifespan memory 
trajectories are important to consider.  
 
One way to determine how changes in ovarian hormones contribute to memory decline in 
females is with hormone replacement therapy. In women, hormone replacement therapy can 
prevent cognitive decline [32]. However, the timing is important, with cognitive benefits only 
observed if replacement is initiated close to the onset of menopause. These findings are echoed 
in rodents. In rats, hormone replacement improves spatial memory performance only when 
initiated within 3 months of ovariectomy, not at 5 or 10 months after ovariectomy [33-35].  
 
Men also show age-associated declines in cognition. These declines are associated with lower 
testosterone levels and a higher risk of Alzheimer’s disease [36]. Administering testosterone, 
which is aromatized to estrogen, to aged male rats improves working memory, whereas 
dihydrotestosterone, which is not aromatized to estrogen, has no effect [37]. Thus, hormone 
therapy in aged males AND females may have beneficial effects on some aspects of cognition. 
 
Alzheimer’s disease shows sex differences in its prevalence, clinical manifestations, disease 
course, and prognosis—particularly across the life span [38].  
 
Although these differences could be related to the increased life expectancy of women, 
longevity alone may not fully explain why 2/3 of Alzheimer’s disease patients are women. The 
incidence of Alzheimer’s also diverges later in life, with females slightly higher than males. 
Alzheimer’s disease is marked by the accumulation of amyloid-beta plaques and neurofibrillary 
tangles, which contribute to neuronal loss and cognitive and physical disability [40]. These 
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hallmarks are recapitulated in animal models. While much of this work has been done in male 
rodents, there are known sex differences in the potential pathways that contribute to the 
accumulation of amyloid-beta and neurofibrillary tangles. For example, inflammation increases 
in both sexes with age, but microglia, which are capable of clearing aggregates in the brain, are 
more inflammatory in females than in males and show different inflammatory molecule 
profiles, factors that may be directly attributed to differences in estrogen receptors [15].  
 
Women with the genetic risk factor APOE4 also have a greater risk of developing Alzheimer’s, 
show accelerated progression of the disease, and have more severe memory and cognitive 
decline than men with this allele. Similar findings have been observed in APOE4 mouse models 
[41-43].  
The decline in sex hormone levels in women also coincides with their increased risk for 
Alzheimer’s disease. Some of these findings are recapitulated in mice where ovariectomy 
increases soluble amyloid-beta levels in mice and worsens behavioral performance; these 
changes are attenuated by estradiol hormone replacement [44][41]. Therefore, sex differences 
should be a priority in the development of Alzheimer’s disease therapeutics from preclinical to 
clinical studies [45]. 
 
In this video, we covered how sex differences in aging may contribute to normal and 
pathological cognitive changes. Some of these cognitive effects can be attenuated by hormone 
replacement therapy in females when administered at the optimal timing. Sex disparities in 
neurodegenerative diseases such as Alzheimer’s disease highlight the importance of including 
both sexes in aging research.  
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