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Module 1, Video 5: Sex differences in stress reactivity and its implications for 
neuropsychiatric diseases 
 
Similar to humans, laboratory animals are constantly surveying their environment and 
determining whether changes introduce a potential threat—real or perceived—to bodily 
processes. This process is fairly conserved among mammals. Information from the 
environment is judged as stressful based on sensory input such as what we see and 
what we hear, AND on what we remember from previous similar encounters. If the 
situation is determined to be threatening, the body responds by activating several 
systems, including central systems to increase arousal and attention, the autonomic 
nervous system, which initiates the fight or flight response, and the endocrine system, 
which includes the structures that make up the Hypothalamic—Pituitary—Adrenal axis, 
or HPA axis. The reactions of these various systems, including the HPA axis, form the 
basis for how our brains and bodies perceive, react to and behave in response to a 
stressor. But emerging evidence from both humans and animals suggests that the 
response to different types of stressors is different in males and females. In this video, 
we will introduce sex differences in behavioral and neurological responses to different 
types of stressors, with a focus on the role of the HPA axis. We will also discuss how sex 
differences in stress reactivity may mediate observed differences in the prevalence of 
various neuropsychiatric diseases. 
 
Activation of the HPA axis in response to real or perceived stress initially involves the 
release of CRH and vasopressin by the hypothalamus. Rises in CRH and vasopressin 
trigger ACTH release from the pituitary gland, which then acts on the adrenal medulla, 
culminating in the release of glucocorticoids—mainly corticosterone in rodents and 
cortisol in humans. Glucocorticoids in turn feedback onto the hypothalamus and 
pituitary gland by acting on two types of glucocorticoid receptors—the glucocorticoid 
receptor and mineralcorticoid receptor. This feedback modulates activity of the HPA axis 
in what is termed a negative feedback loop.  
 
Glucocorticoids act on virtually all tissues of the body, including the brain, inducing 
physiological and behavioral changes necessary for survival. In rodents, there are 
prominent sex differences in how the HPA axis responds to stress: For example, females 
typically have a more robust HPA response following exposure to a number of different 
types of acute stressors, as evidenced by their increased corticosterone and ACTH levels 
[1-5].  
 
Sex differences at each level of the HPA axis, as well as in other limbic structures that 
regulate activation of the HPA axis such as the amygdala, likely underlie these 
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differences between males and females. The expression of HPA axis-related genes also 
differs between males and females. Female rats show greater mRNA expression of 
vasopressin and CRH in the paraventricular nucleus of the hypothalamus, and greater 
mRNA expression of the ACTH precursor, POMC, in the anterior pituitary following acute 
stress compared with males [1, 3, 4, 6].  
As important as activation of the HPA axis is to survival, being able to shut off the 
response of the HPA axis after cessation of the stressor is equally important. Shut off of 
the HPA axis occurs through negative feedback of glucocorticoids on brain regions 
critical to HPA axis initiation. In addition to a more robust HPA response to stress, 
females also show a delayed return to baseline after exposure to an acute stressor, 
indicating sex differences in glucocorticoid-mediated HPA negative feedback [1-4]. 
These differences may be due to underlying differences in glucocorticoid receptor 
activation of the limbic structures known to inhibit the HPA axis, including the frontal 
cortex, cingulate cortex, piriform cortex, and hippocampus [8]. Females show both 
lower glucocorticoid binding in the hypothalamus [9] as well as a lower density of both 
types of glucocorticoid receptors in the pituitary compared to males [10]. Furthermore, 
glucocorticoid receptor mRNA regulation in response to acute stressors varies between 
males and females in brain structures that regulate HPA activity, with higher 
glucocorticoid receptor mRNA levels in the hypothalamus of male rats compared to 
female rats [11, 12].  
 
Sex differences in HPA regulation are further highlighted by brain region-specific 
glucocorticoid receptor knockout studies. For example, the loss of glucocorticoid 
receptors in the forebrain of male mice leads to HPA axis dysregulation in males but not 
females, as evidenced by increased morning corticosterone levels at baseline and 
changes in the time-dependent corticosterone release pattern in response to an acute 
stress challenge [13]. Selectively deleting glucocorticoid receptors in the paraventricular 
nucleus of the hypothalamus also increases ACTH and corticosterone levels in knockout 
male mice versus wild-type mice, but no such change is observed in females [14]. Taken 
together, sex differences in stress reactivity and inhibitory control may be brain region 
specific. 
 
Sex differences in the neuroendocrine response to acute stress during adulthood are 
mediated in part by interactions between the HPA axis and the neuroendocrine system 
that controls reproduction. This system is known as the hypothalamic–pituitary–gonadal 
(or HPG) axis [15]. The HPG axis is responsible for the production and secretion of 
testosterone and estrogens from the testes and ovaries, respectively. Both testosterone 
and estradiol can in turn modulate the HPA axis in adulthood and contribute to sex-
specific differences in HPA function.  
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As mentioned in Video 3, sex hormone receptors are distributed widely throughout the 
brain, including in key parts of the neural circuitry controlling the HPA axis. This allows 
gonadal steroids to modify the neuroendocrine response to stress in parallel to changes 
in reproductive function. Variations in sex hormone receptor expression across brain 
regions may ultimately explain why males and females show different stress responses. 
For example, neurons in the paraventricular nucleus of the hypothalamus, an area that 
directly regulates HPA axis activity, show robust expression of estrogen receptor beta 
and G-protein-coupled estrogen receptors, but limited androgen receptor expression. 
Estradiol has been shown to alter HPA axis function either directly via the 
paraventricular nucleus or indirectly through brain regions that project to the 
paraventricular nucleus; in contrast, androgens, predominantly modulate HPA function 
through indirect mechanisms [2]. Thus, sex hormones modulate HPA activity through 
distinct mechanisms [2, 16]. 
 
Changes in HPA axis function may also fluctuate across the estrous cycle. Studies show 
that as estradiol levels increase during proestrus in female rats, basal and stress-induced 
activity of the HPA axis also increases. For example, female rodents in diestrus—which is 
characterized by low estradiol levels—show similar resting glucocorticoid secretion and 
a similar HPA on-off response to stress as males [18, 19]. By proestrus, which is 
characterized by high estradiol and progesterone levels, and estrus, which occurs just 
following the estradiol peak, females exhibit higher basal and stress-induced ACTH and 
corticosterone levels [18-20]. The highest levels of HPA output are observed on 
proestrus morning, when estradiol levels are at their peak, but elevations in 
progesterone have not yet occurred. Female rats in proestrus and estrus also have a 
delayed return to baseline glucocorticoid secretion following stress [18, 19].  
 
This may be due to less robust glucocorticoid negative feedback on the HPA axis and/or 
decreased input from limbic structures that are known to inhibit the HPA axis [8, 19]. 
Overall, changes in HPA axis function across the reproductive cycle highlight the need to 
consider variations in estradiol when examining mechanisms or behaviors with known 
or potentially unknown interactions with the HPA axis. 
 
While outside of the scope of this video series, it should also be noted that the HPA axis 
is not immune to the effects of androgens. Additionally, there are also organizational 
effects of sex hormones during key developmental stages [21, 22], as well as effects of 
puberty, where rises in sex steroids in both scenarios can drive permanent changes in 
brain HPA function [23]. 
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How does all of this relate to stress- and trauma-associated diseases? Our ability to 
adapt to acute stressors provides an evolutionary advantage, allowing us to mobilize 
resources when necessary to survive. But chronic or repeated exposure to stress can 
drive constant activation of the HPA axis, which is detrimental and leads to an increased 
risk of disease, particularly psychiatric disorders [24, 25].  
 
Females show a higher incidence of many psychiatric disorders known to be precipitated 
or worsened by stress, and they also show different responses to stressors in terms of 
their coping behavior. For example, consistent with mice, men exposed to acute social 
stress have impaired cognitive flexibility while women do not [26, 27].  Stress 
habituation, or the ability to adapt to a repeated homotypic stressor, is also lower in 
females compared to males; this process is known to be influenced by estrogens [28-
31]. Finally, research suggests that corticosterone levels do not predict depressive-like 
behavior in female rodents, as they do in males [32].  
 
But historically, females have been largely omitted from this line of research. The 
underlying mechanism of how chronic stress exposure leads to long-terms changes in 
HPA reactivity and the activation of other systems as well as the role of sex hormones is 
unknown. But better diagnoses and treatments for these diseases, especially in women, 
cannot be achieved until we know this information [33]. Animal models still offer the 
best hope for understanding these mechanistic processes but some challenges exist: 
Many of these challenges, including the need for more robust and better validated 
animal models, will be discussed in more detail in Video 17. But one of the most 
important challenges in modeling psychiatric diseases is the heterogeneity of these 
disorders—between AND within males and females—including the patterns of stress-
induced neuronal activity in the brain. This heterogeneity is difficult to capture in 
animals, as most animal models use highly homogenous conditions characterized by 
genetic uniformity. Understanding the heterogeneity of how stress responses and 
coping behaviors differ across the full spectrum of males and females is important for 
discovering better therapeutics for mood and anxiety disorders. Therefore, better 
preclinical models designed to study and capture clinical heterogeneity are urgently 
needed [32, 34-36]. 
 
As we have shown in this video, males and females show vastly different responses to 
stress, mediated in part by underlying differences in neural circuitry related to the stress 
system as well as the interplay of sex hormones with critical brain regions. As psychiatric 
disorders affect nearly 500 million individuals worldwide and are nearly two to three 
times more prevalent in females [37], studying the effects of stress in both males and 
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females is critical to revealing the mechanism of and developing diagnostics and 
therapeutics for these conditions. 
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