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Module 2, Video 10: Sex differences in maturation and aging 
 
Most research is done with young adult animals. However, experiments using animals outside 
of young adulthood or spanning multiple ages is also important, but requires special 
considerations. This is particularly important when both males and females are used in the 
same experiment. Dramatic changes in gonadal hormones across the lifespan can affect 
experimental outcomes [1]. These changes occur on different timelines for males and females 
across species. In this video, we will cover logistical design considerations for using males and 
females across the lifespan.  
  
Puberty occurs later in males than in females. This is problematic if you want to study this time 
period. So, how can you best address timing differences in puberty while still keeping your 
experimental variables controlled? In other words, should you age-match your animals even 
though one sex will not be undergoing puberty or should you assess a span of time that covers 
puberty in both sexes? The answer depends upon your experimental questions and desired 
outcomes. Puberty is accompanied by hormonal changes, switches in how the brain reacts to 
certain proteins, and changes in brain structure that are both dependent and independent of 
hormones [2-5]. Thus, WHEN animals are tested can have profound effects on behavioral and 
other outcomes. It is important to research the specific timing for the species and strain you 
plan to use.   
 
It’s also important to consider how exposure to stress or endocrine-disrupting chemicals during 
critical windows of development may contribute to subsequent alterations in puberty onset. 
For example, in females, early‐life stress has been shown to accelerate sexual maturation in 
both humans [6, 7] and rodents [8-10]. In males, however, early‐life stress has either no effect 
[11] or delays puberty onset [9, 12], although inconsistencies could be due to difficulties in 
measuring puberty onset in male rodents [13].  
 
Another important example is the timing of shipping animals. Shipping animals of both sexes 
during puberty or pregnancy can have short-term and long-lasting consequences on behavioral 
outcomes and hormone responses [14-20], likely due to the stress of the shipping process.  
 
These two examples highlight the importance of how shifts in pubertal timing are important to 
consider when planning experiments.  
 
Studying aging in rodents also requires special considerations. Unlike humans, rats and mice 
begin to experience irregular estrous cycles at 9-12 months of age. Menopause also manifests 
differently in rodents than in humans [21]. By definition, menopause in humans occurs when 
menstruation has ceased, ovarian follicular activity is lost, and hormone levels fall [22-24]. In 
rodents, however, following the onset of irregular estrous, some rodents will transition directly 
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to an anestrous state. This state is similar to menopause in humans, including no ovulation and 
low levels of gonadal steroids, but mature ovulatory follicles can still exist [21]. Before 
anestrous, rats more often than mice, can enter a pseudopregnancy phase that can continue 
for the rest of their lives, meaning that these animals never mimic the physiological conditions 
necessary to study menopause in humans [25]. There are also surgical and non-surgical options 
as well as some newly developed genetic models to model menopause in rodents. The right 
model will depend on your experimental question and outcomes [26, 27].  
 
It should be noted that male rodents also have varying levels of testosterone across their 
lifespan, with the highest concentrations in adulthood/middle age [48]. Gonadectomy in male 
animals has good translatability to andropause syndrome in men.  
 
The age of the animal can also matter for specific types of methodologies that you might 
consider employing. One example is hippocampal long-term potentiation (or LTP). LTP is an 
extensively studied phenomena in neuroscience and shows significant changes across the 
lifespan [49-52]. Many of these changes are directly related to gonadal hormone fluctuations 
across the lifespan, which leads to different levels of hippocampal neuron excitability. Cyclic 
changes in hippocampal LTP across the estrous cycle have also been observed.  
 
However, a 2009 review study found that 59% of hippocampal LTP studies were performed in 
animals that had not yet reached adulthood [53]. Further, 30% of these studies also pooled 
together animals whose ages varied by 3-4 weeks. Thus, the effects of the experimental 
manipulation cannot be distinguished from the effects of hormonal variations when the results 
of animals spanning critical periods of development are analyzed together  [53].  Therefore, it is 
critical to design experiments that carefully consider the factors that can change with both age 
and sex. 
 
Tamoxifen has become an important tool for investigating gene function in mice. It allows 
researchers to temporally control gene deletion using the Cre/loxP system to determine 
whether a gene is required in an adult animal. A point mutation is introduced to the ligand-
binding domain of estrogen receptor alpha, resulting in a receptor that only binds the synthetic 
selective estrogen receptor modulator tamoxifen, and not endogenous estrogens.  
 
Tamoxifen shows mixed agonist/antagonist activity for ERα, depending on the tissue and cell 
type. Tamoxifen has also been used to delay precocious puberty [54], and thus will delay 
puberty onset when used to delete a gene before puberty. Even its use in adult animals can 
confound some experimental results because, similar to estrogen, tamoxifen treatment causes 
an acute drop in food intake and body weight [55, 56]. Transient treatment with tamoxifen also 
has short-term effects on glucose tolerance and insulin secretion [57], and strikingly persistent 
effects on lipid metabolism and fat mass [58]. These factors highlight the importance of 
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including tamoxifen-only controls in all behavioral analyses when it is used at any age to induce 
gene deletion. 
 
As demonstrated in this video, age and sex are both important experimental factors that must 
be considered when designing your study. Critical changes occur during puberty on different 
timelines for males and females and hormone fluctuations continue across the rodent lifespan, 
all of which can affect behavioral outcomes. Experimentally controlling for hormone variations 
induced by age can mitigate these effects when males and females are used in the same 
experiment. 
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