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Module 2, Video 7: Housing considerations when using male and female animals 
 
Concept introduction: Recent pushes to improve preclinical reproducibility have emphasized that all 
experimental conditions be transparently reported, including those related to rearing and testing. 
The home cage environment is often an overlooked source of experimental variability that can have 
profound effects on how animals behave outside of the cage [1]. Some of these home cage 
conditions have different effects in males and females. In this video, we will discuss examples of 
home cage housing conditions that demonstrate how the context can matter by introducing 
phenotypic variation in males and females both within and across cages.  
 
Deciding whether to house your animals individually or in same-sex pairs or small groups may be the 
most important of all the housing variables to consider. This decision is often made based on the 
experimental aims. As social animals, most rodents are well adapted to living in a group and social 
contact with conspecifics is important for their overall well-being [1]. However, sometimes single 
housing is used as an experimental design modification to, for example, obtain accurate behavioral 
measurements during home cage monitoring or ensure the safety of animals following a surgical 
procedure. If you choose to house your animals individually, it is important to consider that physical 
and social isolation can produce stress, especially when done chronically. These effects are widely 
documented in rodents and other social animals and can be expressed as variations in physiology [5-
8]. Stress can also be manifested via changes in anxiety and depression phenotypes as well as 
altered learning and memory.  
 
The effects of isolation are different between males and females and may depend upon the 
developmental time period, with effects in adulthood skewed towards females and effects post-
weaning and adolescence skewed towards males [8-24].   
 
When social isolation is necessary, the different effects on males and females should be accounted 
for as a potential confounder, particular during development. Alternatively, some mitigation 
strategies have been proposed including allowing for olfactory, visual and auditory contact with 
conspecifics [25] or providing environmental enrichment [26]. 
 
On the other end of the spectrum, group housing may also lead to unintended phenotypic variation 
in males and females. There are two primary concerns of group housing. The first is unintentional 
crowding through either a decrease in spatial density or an increase in social density. In rat studies 
where the available space was decreased and the number of rats per group was increased, males 
showed greater HPA responsivity; in contrast, females subjected to the same changes showed either 
no effects or even positive effects of crowding [27-29]. High housing density has also been suggested 
to either cause or exacerbate the prevalence of barbering, a repetitive abnormal behavior indicating 
social stress, especially among female mice [30, 31]. 
 
The second concern of group housing is aggressive behavior associated with the establishment and 
maintenance of social hierarchies. Across species, social hierarchies and aggression are typically 
studied in the context of male inter-sexual competition, with greater competition leading to higher 
aggression in males. This aggression can lead to large inter-cage variations in phenotypic expression, 
with greater effects in male subordinates [32]. Fewer studies have examined the role of hierarchies 
on phenotypic variation in females, outside of the specific case of the maternal defense of offspring. 
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But other group-housed females also form hierarchies, which should be accounted for in design and 
analysis.  
 
Another important point to consider is whether or not males and females should be housed in 
separate rooms in the animal care facility. Generally, there are two reasons to argue against this 
strategy. First, cross-room comparisons are limited when males and females in the same experiment 
are kept in separate rooms. This is because subtle room-to-room environmental variations cannot be 
accounted for statistically. However, if the experimental conditions dictate that males and females 
be housed in separate rooms, replicate batches must be used where the rooms for males and 
females are switched between the batches to control for between room variables.  
 
Second, the presence of male pheromones is needed for proper female hormone cycling and 
reproductive viability [35-44]. For example, females housed in groups and isolated from male odors 
exhibit a prolongation or suppression of the estrous cycle [33, 34] and delayed puberty in juvenile 
animals.  
 
The presence of cycling females is also needed for proper androgen and sperm production in male 
mice [45]. In addition, ovarian synchrony in females can be induced by either housing female rats 
together with males in the same cage or in the same room with airborne olfactory cue exposure [46, 
47]; similar findings have been observed in other species [48, 49]. 
 
Breeders, however, should always be housed separately from experimental animals for two main 
reasons. First, female mice exposed to urine from pregnant or lactating females have longer periods 
of estrus than mice exposed to the urine of single housed females [50]. Second, smelling the urine of 
an unfamiliar male can block embryo implantation early in pregnancy [51-52], resulting in a return to 
ovulation.  
 
As demonstrated in this video, the context in which an animal is housed can have wide-reaching 
implications on experimental outcomes. Males and females can have different behavioral and 
neurochemical changes in response to the same housing conditions. Thus, known and potential sex 
differences in response to housing conditions should be accounted for in experimental and statistical 
design. 
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