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Module 2, Video 8: Tracking hormone fluctuations in female rodents and the influence of these 
fluctuations on various research-related outcomes 
 

One argument for excluding females from preclinical research is that circulating ovarian hormones 
will make data from female animals more variable than data from males [1]. Additionally, there is a 
misconception that researchers must automatically quadruple the number of experimental animals 
to assess estrus-associated effects, which can be both costly and time consuming. But are these 
steps really needed to work with females? In this video, we will demonstrate that hormone 
variations occur across both sexes, contributing to behavioral and physiological variability in females 
AND males. We will also describe examples of WHEN experimental outcome may necessitate 
tracking hormone fluctuations in both males and females, and best practices for how to track 
hormone levels when appropriate. 

Variations in hormone levels across the female infradian rythmn are well understood. But 
testosterone also shows variability across the day and across the lifespan [3, 4]. Factors related to 
group housing can effect within-cohort hormone variability in both sexes. For example, in mice, 
circulating testosterone levels can be (on average) 5-times higher in dominant versus subordinate 
males [5], leading to high variability among mice of the same age and strain housed under identical 
conditions [6]. Thus, data variability in males could also be related to variations in hormone levels. 
But does this variability skew heavier in females?  

Two prominent meta-analyses of large numbers of studies in mice [7] and rats [8] showed that data 
variability across a number of common measures was comparable across males and females. In 
some instances, it was actually greater in males. Thus, in most cases, the degree of variability 
observed across both sexes should be accepted as natural inter-individual variability and estrous 
cycle assessment is not a necessity.  

The shared variability across males and females doesn’t mean that gonadal hormones should never 
be accounted for. In contrast, hormone variability should be considered equally across both sexes 
based on the potential to influence experimental outcomes. Later in Module 2, we will discuss how 
to design an experiment to consider hormone variability.  

There are some documented case examples of where female hormone fluctuations do impact the 
results and may need to be considered when evaluating data variability. Many of these examples 
were discussed in Module 1 [9-37].  

In males, systematic studies regarding the impact of male hormonal fluctuations on study outcomes 
are more limited because historically, hormone fluctuations in males were not considered a source 
of data variability. However, as awareness has increased, some papers have begun to stratify male 
animals according to their hormone status. Preliminary effects of testosterone level variations have 
been observed for anxiety [38, 39], depression, spatial abilities, and memory [40]. The most cited 
paper analyzed the effects of testosterone on anxiety in mice, showing that testosterone—either 
endogenous or exogenous—decreases anxiety in the elevated plus maze in a dose-dependent 
manner [39]. Thus, male behavioral variations may also be related to flucutations in hormone levels.  

 

Tracking hormone levels in both males and females 
 
Sometimes, tracking hormones is necessary and best practices should be followed.  
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In females, swab and lavage are the two most commonly used methods. With swab, a cotton swab 
is moistened, gently inserted into the animal’s vagina, and then turned and rolled against the vaginal 
wall before being removed. Lavage involves flushing cells from the vaginal lining by introducing a 
small amount of fluid into the vagina using a rounded tip disposable pipette that is gently placed at 
the opening of the vaginal canal. The fluid spontaneously aspirates into the vaginal canal without tip 
insertion. The pressure is controlled by pressing or releasing the pipette bulb.  
 
With both techniques, extracted cells are then examined with a microscope to determine the cycle 
stage based on the types and morphology of the cells.  
 

Each of these methods has PROS and CONS, and requires different levels of expertise and time. The 
decision of which method to use is highly dependent on the study design. Swabbing is preferred 
because it is the quickest and produces high quality smears [41-43].  

 
It should also be notted that, vaginal samples need to be taken at the same time each day on 
consecutive days over a period of time to provide detailed information about the estrous cycle. If 
your experiment requires cycle tracking or must be performed during a certain stage of the estrous 
cycle, cycle assessment should start about a week ahead of the experiments to ensure accuracy and 
eliminate animals that fail to show a regular cycle.  
 
It is also important to note that the estrous cycle is sensitive to environmental changes [44-48].  
 
Though less commonly used, it is also possible to use a visual identification method [42]. However, 
this method eliminates the possibility of detecting transitional stages, or the intersection of two 
consecutive cycle stages. Further, this method is subseptible to variations in lighting.  
 
In males, tracking hormones is much more difficult. There is no proper method for monitoring 
hormone levels in males that isn’t aversive. Studies that have tracked male testosterone levels did so 
using blood samples, which has its own inherent challenges. Namely, only males sampled during the 
ultradian surge will have detectable testosterone levels [51, 52]. Other studies have inferred higher 
or lower levels of hormones by assessing hormone-influenced hierarchy patterns in mice via assays 
such as the territory urine marking assay [53]. But this method has not been reliably compared to 
blood-based testosterone levels.  
 
As demonstrated in this video, hormone variability occurs in all rodents and should not detract from 
the inclusion of females. The decision to track hormone levels in both sexes should depend on 
whether your outcome measure is known to be influenced by hormone fluctuations or your results 
suggest possible sex differences. There are a number of methods in females for tracking the estrous 
cycle, each with their own advantages and disadvantages, while in males, the only reliable option is 
blood sampling. 
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